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7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out
to be the same underlying space displayed in different symbols. For example, consider the spaces

R2 = {(a, b) | a, b ∈ R} and P1 = {a+bx | a, b ∈ R}

Compare the addition and scalar multiplication in these spaces:

(a, b)+(a1, b1) = (a+a1, b+b1) (a+bx)+(a1+b1x) = (a+a1)+(b+b1)x

r(a, b) = (ra, rb) r(a+bx) = (ra)+(rb)x

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in R2 to
a+bx, then R2 becomes P1, complete with addition and scalar multiplication. This can be expressed by
noting that the map (a, b) 7→ a+bx is a linear transformation R2→ P1 that is both one-to-one and onto.
In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation T : V →W is called an isomorphism if it is both onto and one-to-one. The
vector spaces V and W are said to be isomorphic if there exists an isomorphism T : V →W , and
we write V ∼=W when this is the case.

Example 7.3.1

The identity transformation 1V : V →V is an isomorphism for any vector space V .

Example 7.3.2

If T : Mmn→Mnm is defined by T (A) = AT for all A in Mmn, then T is an isomorphism (verify).
Hence Mmn

∼= Mnm.

Example 7.3.3

Isomorphic spaces can “look” quite different. For example, M22
∼= P3 because the map

T : M22→ P3 given by T

[
a b

c d

]
= a+bx+ cx2 +dx3 is an isomorphism (verify).

The word isomorphism comes from two Greek roots: iso, meaning “same,” and morphos, meaning
“form.” An isomorphism T : V →W induces a pairing

v↔ T (v)
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between vectors v in V and vectors T (v) in W that preserves vector addition and scalar multiplication.
Hence, as far as their vector space properties are concerned, the spaces V and W are identical except
for notation. Because addition and scalar multiplication in either space are completely determined by the
same operations in the other space, all vector space properties of either space are completely determined
by those of the other.

One of the most important examples of isomorphic spaces was considered in Chapter 4. Let A denote
the set of all “arrows” with tail at the origin in space, and make A into a vector space using the paral-
lelogram law and the scalar multiple law (see Section 4.1). Then define a transformation T : R3→ A by
taking

T




x

y

z


= the arrow v from the origin to the point P(x, y, z).

In Section 4.1 matrix addition and scalar multiplication were shown to correspond to the parallelogram
law and the scalar multiplication law for these arrows, so the map T is a linear transformation. Moreover T

is an isomorphism: it is one-to-one by Theorem 4.1.2, and it is onto because, given an arrow v in A with tip

P(x, y, z), we have T




x

y

z


= v. This justifies the identification v =




x

y

z


 in Chapter 4 of the geometric

arrows with the algebraic matrices. This identification is very useful. The arrows give a “picture” of the
matrices and so bring geometric intuition into R3; the matrices are useful for detailed calculations and so
bring analytic precision into geometry. This is one of the best examples of the power of an isomorphism
to shed light on both spaces being considered.

The following theorem gives a very useful characterization of isomorphisms: They are the linear
transformations that preserve bases.

Theorem 7.3.1

If V and W are finite dimensional spaces, the following conditions are equivalent for a linear
transformation T : V →W .

1. T is an isomorphism.

2. If {e1, e2, . . . , en} is any basis of V , then {T (e1), T (e2), . . . , T (en)} is a basis of W .

3. There exists a basis {e1, e2, . . . , en} of V such that {T (e1), T (e2), . . . , T (en)} is a basis of
W .

Proof. (1) ⇒ (2). Let {e1, . . . , en} be a basis of V . If t1T (e1)+ · · ·+ tnT (en) = 0 with ti in R, then
T (t1e1 + · · ·+ tnen) = 0, so t1e1 + · · ·+ tnen = 0 (because ker T = {0}). But then each ti = 0 by the
independence of the ei, so {T (e1), . . . , T (en)} is independent. To show that it spans W , choose w in
W . Because T is onto, w = T (v) for some v in V , so write v = t1e1 + · · ·+ tnen. Hence we obtain
w = T (v) = t1T (e1)+ · · ·+ tnT (en), proving that {T (e1), . . . , T (en)} spans W .

(2)⇒ (3). This is because V has a basis.

(3)⇒ (1). If T (v) = 0, write v = v1e1 + · · ·+ vnen where each vi is in R. Then

0 = T (v) = v1T (e1)+ · · ·+ vnT (en)
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so v1 = · · ·= vn = 0 by (3). Hence v = 0, so ker T = {0} and T is one-to-one. To show that T is onto, let
w be any vector in W . By (3) there exist w1, . . . , wn in R such that

w = w1T (e1)+ · · ·+wnT (en) = T (w1e1 + · · ·+wnen)

Thus T is onto.

Theorem 7.3.1 dovetails nicely with Theorem 7.1.3 as follows. Let V and W be vector spaces of
dimension n, and suppose that {e1, e2, . . . , en} and {f1, f2, . . . , fn} are bases of V and W , respectively.
Theorem 7.1.3 asserts that there exists a linear transformation T : V →W such that

T (ei) = fi for each i = 1, 2, . . . , n

Then {T (e1), . . . , T (en)} is evidently a basis of W , so T is an isomorphism by Theorem 7.3.1. Further-
more, the action of T is prescribed by

T (r1e1 + · · ·+ rnen) = r1f1 + · · ·+ rnfn

so isomorphisms between spaces of equal dimension can be easily defined as soon as bases are known. In
particular, this shows that if two vector spaces V and W have the same dimension then they are isomorphic,
that is V ∼=W . This is half of the following theorem.

Theorem 7.3.2

If V and W are finite dimensional vector spaces, then V ∼=W if and only if dim V = dim W .

Proof. It remains to show that if V ∼=W then dim V = dim W . But if V ∼=W , then there exists an isomor-
phism T :V →W . Since V is finite dimensional, let {e1, . . . , en} be a basis of V . Then {T (e1), . . . , T (en)}
is a basis of W by Theorem 7.3.1, so dim W = n = dim V .

Corollary 7.3.1

Let U , V , and W denote vector spaces. Then:

1. V ∼=V for every vector space V .

2. If V ∼=W then W ∼=V .

3. If U ∼=V and V ∼=W , then U ∼=W .

The proof is left to the reader. By virtue of these properties, the relation∼= is called an equivalence relation

on the class of finite dimensional vector spaces. Since dim (Rn) = n it follows that

Corollary 7.3.2

If V is a vector space and dim V = n, then V is isomorphic to Rn.
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If V is a vector space of dimension n, note that there are important explicit isomorphisms V → Rn.
Fix a basis B = {b1, b2, . . . , bn} of V and write {e1, e2, . . . , en} for the standard basis of Rn. By
Theorem 7.1.3 there is a unique linear transformation CB : V → Rn given by

CB(v1b1 + v2b2 + · · ·+ vnbn) = v1e1 + v2e2 + · · ·+ vnen =




v1

v2
...

vn




where each vi is in R. Moreover, CB(bi) = ei for each i so CB is an isomorphism by Theorem 7.3.1, called
the coordinate isomorphism corresponding to the basis B. These isomorphisms will play a central role
in Chapter 9.

The conclusion in the above corollary can be phrased as follows: As far as vector space properties
are concerned, every n-dimensional vector space V is essentially the same as Rn; they are the “same”
vector space except for a change of symbols. This appears to make the process of abstraction seem less
important—just study Rn and be done with it! But consider the different “feel” of the spaces P8 and M33

even though they are both the “same” as R9: For example, vectors in P8 can have roots, while vectors in
M33 can be multiplied. So the merit in the abstraction process lies in identifying common properties of
the vector spaces in the various examples. This is important even for finite dimensional spaces. However,
the payoff from abstraction is much greater in the infinite dimensional case, particularly for spaces of
functions.

Example 7.3.4

Let V denote the space of all 2×2 symmetric matrices. Find an isomorphism T : P2→V such that
T (1) = I, where I is the 2×2 identity matrix.

Solution. {1, x, x2} is a basis of P2, and we want a basis of V containing I. The set{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is independent in V , so it is a basis because dim V = 3 (by

Example 6.3.11). Hence define T : P2→V by taking T (1) =

[
1 0
0 1

]
, T (x) =

[
0 1
1 0

]
,

T (x2) =

[
0 0
0 1

]
, and extending linearly as in Theorem 7.1.3. Then T is an isomorphism by

Theorem 7.3.1, and its action is given by

T (a+bx+ cx2) = aT (1)+bT (x)+ cT (x2) =

[
a b

b a+ c

]

The dimension theorem (Theorem 7.2.4) gives the following useful fact about isomorphisms.

Theorem 7.3.3

If V and W have the same dimension n, a linear transformation T : V →W is an isomorphism if it
is either one-to-one or onto.
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Proof. The dimension theorem asserts that dim (ker T )+ dim ( im T ) = n, so dim (ker T ) = 0 if and only
if dim ( im T ) = n. Thus T is one-to-one if and only if T is onto, and the result follows.

Composition

Suppose that T : V →W and S : W →U are linear transformations. They link together as in the diagram
so, as in Section 2.3, it is possible to define a new function V →U by first applying T and then S.

Definition 7.5 Composition of Linear Transformations

T S

V W U

Given linear transformations V
T−→W

S−→U , the composite

ST : V →U of T and S is defined by

ST (v) = S [T (v)] for all v in V

The operation of forming the new function ST is called composition.1

The action of ST can be described compactly as follows: ST means first T then S.

Not all pairs of linear transformations can be composed. For example, if T : V →W and S : W →U

are linear transformations then ST : V →U is defined, but T S cannot be formed unless U = V because
S : W →U and T : V →W do not “link” in that order.2

Moreover, even if ST and T S can both be formed, they may not be equal. In fact, if S : Rm→ Rn and
T : Rn→ Rm are induced by matrices A and B respectively, then ST and T S can both be formed (they are
induced by AB and BA respectively), but the matrix products AB and BA may not be equal (they may not
even be the same size). Here is another example.

Example 7.3.5

Define: S : M22→M22 and T : M22→M22 by S

[
a b

c d

]
=

[
c d

a b

]
and T (A) = AT for

A ∈M22. Describe the action of ST and T S, and show that ST 6= T S.

Solution. ST

[
a b

c d

]
= S

[
a c

b d

]
=

[
b d

a c

]
, whereas

T S

[
a b

c d

]
= T

[
c d

a b

]
=

[
c a

d b

]
.

It is clear that T S

[
a b

c d

]
need not equal ST

[
a b

c d

]
, so T S 6= ST .

The next theorem collects some basic properties of the composition operation.

1In Section 2.3 we denoted the composite as S ◦T . However, it is more convenient to use the simpler notation ST .
2Actually, all that is required is U ⊆V .
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Theorem 7.3.4: 3

Let V
T−→W

S−→U
R−→ Z be linear transformations.

1. The composite ST is again a linear transformation.

2. T 1V = T and 1W T = T .

3. (RS)T = R(ST ).

Proof. The proofs of (1) and (2) are left as Exercise 7.3.25. To prove (3), observe that, for all v in V :

{(RS)T}(v) = (RS) [T (v)] = R{S [T (v)]}= R{(ST )(v)}= {R(ST )}(v)

Up to this point, composition seems to have no connection with isomorphisms. In fact, the two notions
are closely related.

Theorem 7.3.5

Let V and W be finite dimensional vector spaces. The following conditions are equivalent for a
linear transformation T : V →W .

1. T is an isomorphism.

2. There exists a linear transformation S : W →V such that ST = 1V and T S = 1W .

Moreover, in this case S is also an isomorphism and is uniquely determined by T :

If w in W is written as w = T (v), then S(w) = v.

Proof. (1)⇒ (2). If B = {e1, . . . , en} is a basis of V , then D = {T (e1), . . . , T (en)} is a basis of W by
Theorem 7.3.1. Hence (using Theorem 7.1.3), define a linear transformation S : W →V by

S[T (ei)] = ei for each i (7.2)

Since ei = 1V (ei), this gives ST = 1V by Theorem 7.1.2. But applying T gives T [S [T (ei)]] = T (ei) for
each i, so T S = 1W (again by Theorem 7.1.2, using the basis D of W ).

(2)⇒ (1). If T (v) = T (v1), then S [T (v)] = S [T (v1)]. Because ST = 1V by (2), this reads v = v1; that
is, T is one-to-one. Given w in W , the fact that T S = 1W means that w = T [S(w)], so T is onto.

3Theorem 7.3.4 can be expressed by saying that vector spaces and linear transformations are an example of a category. In
general a category consists of certain objects and, for any two objects X and Y , a set mor (X , Y ). The elements α of mor (X , Y )
are called morphisms from X to Y and are written α : X→Y . It is assumed that identity morphisms and composition are defined
in such a way that Theorem 7.3.4 holds. Hence, in the category of vector spaces the objects are the vector spaces themselves and
the morphisms are the linear transformations. Another example is the category of metric spaces, in which the objects are sets
equipped with a distance function (called a metric), and the morphisms are continuous functions (with respect to the metric).
The category of sets and functions is a very basic example.
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Finally, S is uniquely determined by the condition ST = 1V because this condition implies (7.2). S

is an isomorphism because it carries the basis D to B. As to the last assertion, given w in W , write
w = r1T (e1)+ · · ·+ rnT (en). Then w = T (v), where v = r1e1 + · · ·+ rnen. Then S(w) = v by (7.2).

Given an isomorphism T : V →W , the unique isomorphism S : W → V satisfying condition (2) of
Theorem 7.3.5 is called the inverse of T and is denoted by T−1. Hence T : V →W and T−1 : W →V are
related by the fundamental identities:

T−1 [T (v)] = v for all v in V and T
[
T−1(w)

]
= w for all w in W

In other words, each of T and T−1 reverses the action of the other. In particular, equation (7.2) in the proof
of Theorem 7.3.5 shows how to define T−1 using the image of a basis under the isomorphism T . Here is
an example.

Example 7.3.6

Define T : P1→ P1 by T (a+bx) = (a−b)+ax. Show that T has an inverse, and find the action of
T−1.

Solution. The transformation T is linear (verify). Because T (1) = 1+ x and T (x) =−1, T carries
the basis B = {1, x} to the basis D = {1+ x, −1}. Hence T is an isomorphism, and T−1 carries D

back to B, that is,
T−1(1+ x) = 1 and T−1(−1) = x

Because a+bx = b(1+ x)+(b−a)(−1), we obtain

T−1(a+bx) = bT−1(1+ x)+(b−a)T−1(−1) = b+(b−a)x

Sometimes the action of the inverse of a transformation is apparent.

Example 7.3.7

If B = {b1, b2, . . . , bn} is a basis of a vector space V , the coordinate transformation CB : V → Rn

is an isomorphism defined by

CB(v1b1 + v2b2 + · · ·+ vnbn) = (v1, v2, . . . , vn)
T

The way to reverse the action of CB is clear: C−1
B : Rn→V is given by

C−1
B (v1, v2, . . . , vn) = v1b1 + v2b2 + · · ·+ vnbn for all vi in V

Condition (2) in Theorem 7.3.5 characterizes the inverse of a linear transformation T : V →W as the
(unique) transformation S : W →V that satisfies ST = 1V and T S = 1W . This often determines the inverse.
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Example 7.3.8

Define T : R3→ R3 by T (x, y, z) = (z, x, y). Show that T 3 = 1R3 , and hence find T−1.

Solution. T 2(x, y, z) = T [T (x, y, z)] = T (z, x, y) = (y, z, x). Hence

T 3(x, y, z) = T
[
T 2(x, y, z)

]
= T (y, z, x) = (x, y, z)

Since this holds for all (x, y, z), it shows that T 3 = 1R3 , so T (T 2) = 1R3 = (T 2)T . Thus T−1 = T 2

by (2) of Theorem 7.3.5.

Example 7.3.9

Define T : Pn→ Rn+1 by T (p) = (p(0), p(1), . . . , p(n)) for all p in Pn. Show that T−1 exists.

Solution. The verification that T is linear is left to the reader. If T (p) = 0, then p(k) = 0 for
k = 0, 1, . . . , n, so p has n+1 distinct roots. Because p has degree at most n, this implies that
p = 0 is the zero polynomial (Theorem 6.5.4) and hence that T is one-to-one. But
dim Pn = n+1 = dim Rn+1, so this means that T is also onto and hence is an isomorphism. Thus
T−1 exists by Theorem 7.3.5. Note that we have not given a description of the action of T−1, we
have merely shown that such a description exists. To give it explicitly requires some ingenuity; one
method involves the Lagrange interpolation expansion (Theorem 6.5.3).

Exercises for 7.3

Exercise 7.3.1 Verify that each of the following is an
isomorphism (Theorem 7.3.3 is useful).

a. T : R3→ R3; T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R3→ R3; T (x, y, z) = (x, x+ y, x+ y+ z)

c. T : C→ C; T (z) = z

d. T : Mmn →Mmn; T (X) = UXV , U and V invert-
ible

e. T : P1→ R2; T [p(x)] = [p(0), p(1)]

f. T : V → V ; T (v) = kv, k 6= 0 a fixed number, V

any vector space

g. T : M22→ R4; T

[
a b

c d

]
= (a+b, d, c, a−b)

h. T : Mmn→Mnm; T (A) = AT

Exercise 7.3.2 Show that

{a+bx+ cx2, a1 +b1x+ c1x2, a2 +b2x+ c2x2}

is a basis of P2 if and only if
{(a, b, c), (a1, b1, c1), (a2, b2, c2)} is a basis of R3.

Exercise 7.3.3 If V is any vector space, let V n denote the
space of all n-tuples (v1, v2, . . . , vn), where each vi lies
in V . (This is a vector space with component-wise oper-
ations; see Exercise 6.1.17.) If C j(A) denotes the jth col-
umn of the m×n matrix A, show that T : Mmn→ (Rm)n

is an isomorphism if
T (A) =

[
C1(A) C2(A) · · · Cn(A)

]
. (Here Rm con-

sists of columns.)
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Exercise 7.3.4 In each case, compute the action of ST

and T S, and show that ST 6= T S.

a. S : R2 → R2 with S(x, y) = (y, x); T : R2 → R2

with T (x, y) = (x, 0)

b. S : R3→ R3 with S(x, y, z) = (x, 0, z);
T : R3→ R3 with T (x, y, z) = (x+ y, 0, y+ z)

c. S : P2 → P2 with S(p) = p(0) + p(1)x + p(2)x2;
T : P2→ P2 with T (a+bx+ cx2) = b+ cx+ax2

d. S : M22→M22 with S

[
a b

c d

]
=

[
a 0
0 d

]
;

T : M22→M22 with T

[
a b

c d

]
=

[
c a

d b

]

Exercise 7.3.5 In each case, show that the linear trans-
formation T satisfies T 2 = T .

a. T : R4→ R4; T (x, y, z, w) = (x, 0, z, 0)

b. T : R2→ R2; T (x, y) = (x+ y, 0)

c. T : P2→ P2;
T (a+bx+ cx2) = (a+b− c)+ cx+ cx2

d. T : M22→M22;

T

[
a b

c d

]
= 1

2

[
a+ c b+d

a+ c b+d

]

Exercise 7.3.6 Determine whether each of the following
transformations T has an inverse and, if so, determine the
action of T−1.

a. T : R3→ R3;
T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R4→ R4;
T (x, y, z, t) = (x+ y, y+ z, z+ t, t + x)

c. T : M22→M22;

T

[
a b

c d

]
=

[
a− c b−d

2a− c 2b−d

]

d. T : M22→M22;

T

[
a b

c d

]
=

[
a+2c b+2d

3c−a 3d−b

]

e. T : P2→ R3; T (a+bx+ cx2) = (a− c, 2b, a+ c)

f. T : P2→ R3; T (p) = [p(0), p(1), p(−1)]

Exercise 7.3.7 In each case, show that T is self-inverse,
that is: T−1 = T .

a. T : R4→ R4; T (x, y, z, w) = (x, −y, −z, w)

b. T : R2 → R2; T (x, y) = (ky− x, y), k any fixed
number

c. T : Pn→ Pn; T (p(x)) = p(3− x)

d. T : M22→M22; T (X) = AX where

A = 1
4

[
5 −3
3 −5

]

Exercise 7.3.8 In each case, show that T 6 = 1R4 and so
determine T−1.

a. T : R4→ R4; T (x, y, z, w) = (−x, z, w, y)

b. T : R4→ R4; T (x, y, z, w) = (−y, x− y, z, −w)

Exercise 7.3.9 In each case, show that T is an isomor-
phism by defining T−1 explicitly.

a. T : Pn→ Pn is given by T [p(x)] = p(x+1).

b. T : Mnn →Mnn is given by T (A) = UA where U

is invertible in Mnn.

Exercise 7.3.10 Given linear transformations
V

T−→W
S−→U :

a. If S and T are both one-to-one, show that ST is
one-to-one.

b. If S and T are both onto, show that ST is onto.

Exercise 7.3.11 Let T : V →W be a linear transforma-
tion.

a. If T is one-to-one and T R = T R1 for transforma-
tions R and R1 : U →V , show that R = R1.

b. If T is onto and ST = S1T for transformations S

and S1 : W →U , show that S = S1.

Exercise 7.3.12 Consider the linear transformations
V

T−→W
R−→U .

a. Show that ker T ⊆ ker RT .

b. Show that im RT ⊆ im R.
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Exercise 7.3.13 Let V
T−→U

S−→W be linear transforma-
tions.

a. If ST is one-to-one, show that T is one-to-one and
that dim V ≤ dim U .

b. If ST is onto, show that S is onto and that
dim W ≤ dim U .

Exercise 7.3.14 Let T : V → V be a linear transforma-
tion. Show that T 2 = 1V if and only if T is invertible and
T = T−1.

Exercise 7.3.15 Let N be a nilpotent n× n matrix (that
is, Nk = 0 for some k). Show that T : Mnm → Mnm is
an isomorphism if T (X) = X −NX . [Hint: If X is in
ker T , show that X = NX = N2X = · · · . Then use Theo-
rem 7.3.3.]

Exercise 7.3.16 Let T : V →W be a linear transforma-
tion, and let {e1, . . . , er, er+1, . . . , en} be any basis of V

such that {er+1, . . . , en} is a basis of ker T . Show that
im T ∼= span{e1, . . . , er}. [Hint: See Theorem 7.2.5.]

Exercise 7.3.17 Is every isomorphism T : M22 →M22

given by an invertible matrix U such that T (X) =UX for
all X in M22? Prove your answer.

Exercise 7.3.18 Let Dn denote the space of all func-
tions f from {1, 2, . . . , n} to R (see Exercise 6.3.35). If
T : Dn→ Rn is defined by

T ( f ) = ( f (1), f (2), . . . , f (n)),

show that T is an isomorphism.

Exercise 7.3.19

a. Let V be the vector space of Exercise 6.1.3. Find
an isomorphism T : V → R1.

b. Let V be the vector space of Exercise 6.1.4. Find
an isomorphism T : V → R2.

Exercise 7.3.20 Let V
T−→W

S−→V be linear transforma-
tions such that ST = 1V . If dim V = dim W = n, show
that S = T−1 and T = S−1. [Hint: Exercise 7.3.13 and
Theorem 7.3.3, Theorem 7.3.4, and Theorem 7.3.5.]

Exercise 7.3.21 Let V
T−→W

S−→V be functions such that
T S = 1W and ST = 1V . If T is linear, show that S is also
linear.

Exercise 7.3.22 Let A and B be matrices of size p×m

and n×q. Assume that mn = pq. Define R : Mmn→Mpq

by R(X) = AXB.

a. Show that Mmn
∼= Mpq by comparing dimensions.

b. Show that R is a linear transformation.

c. Show that if R is an isomorphism, then m = p

and n = q. [Hint: Show that T : Mmn → Mpn

given by T (X) = AX and S : Mmn →Mmq given
by S(X) = XB are both one-to-one, and use the
dimension theorem.]

Exercise 7.3.23 Let T : V → V be a linear transforma-
tion such that T 2 = 0 is the zero transformation.

a. If V 6= {0}, show that T cannot be invertible.

b. If R : V →V is defined by R(v) = v+T (v) for all
v in V , show that R is linear and invertible.

Exercise 7.3.24 Let V consist of all sequences
[x0, x1, x2, . . . ) of numbers, and define vector operations

[xo, x1, . . . )+ [y0, y1, . . . ) = [x0 + y0, x1 + y1, . . . )

r[x0, x1, . . . ) = [rx0, rx1, . . . )

a. Show that V is a vector space of infinite dimen-
sion.

b. Define T : V → V and S : V → V by
T [x0, x1, . . . ) = [x1, x2, . . . ) and
S[x0, x1, . . . ) = [0, x0, x1, . . . ). Show that
T S = 1V , so T S is one-to-one and onto, but that T

is not one-to-one and S is not onto.

Exercise 7.3.25 Prove (1) and (2) of Theorem 7.3.4.

Exercise 7.3.26 Define T : Pn→ Pn by
T (p) = p(x)+ xp′(x) for all p in Pn.

a. Show that T is linear.

b. Show that ker T = {0} and conclude that T is an
isomorphism. [Hint: Write p(x) = a0+a1x+ · · ·+
anxn and compare coefficients if p(x) =−xp′(x).]

c. Conclude that each q(x) in Pn has the form
q(x) = p(x)+ xp′(x) for some unique polynomial
p(x).

d. Does this remain valid if T is defined by
T [p(x)] = p(x)− xp′(x)? Explain.
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Exercise 7.3.27 Let T : V →W be a linear transforma-
tion, where V and W are finite dimensional.

a. Show that T is one-to-one if and only if there
exists a linear transformation S : W → V with
ST = 1V . [Hint: If {e1, . . . , en} is a basis of
V and T is one-to-one, show that W has a basis
{T (e1), . . . , T (en), fn+1, . . . , fn+k} and use The-
orem 7.1.2 and Theorem 7.1.3.]

b. Show that T is onto if and only if there exists a
linear transformation S : W → V with T S = 1W .
[Hint: Let {e1, . . . , er, . . . , en} be a basis of
V such that {er+1, . . . , en} is a basis of ker T .
Use Theorem 7.2.5, Theorem 7.1.2 and Theo-
rem 7.1.3.]

Exercise 7.3.28 Let S and T be linear transformations
V →W , where dim V = n and dim W = m.

a. Show that ker S = ker T if and only if T = RS

for some isomorphism R : W → W . [Hint: Let
{e1, . . . , er, . . . , en} be a basis of V such that
{er+1, . . . , en} is a basis of ker S = ker T . Use
Theorem 7.2.5 to extend {S(e1), . . . , S(er)} and
{T (e1), . . . , T (er)} to bases of W .]

b. Show that im S = im T if and only if T = SR

for some isomorphism R : V → V . [Hint: Show
that dim (ker S) = dim (ker T ) and choose bases
{e1, . . . , er, . . . , en} and {f1, . . . , fr, . . . , fn} of V

where {er+1, . . . , en} and {fr+1, . . . , fn} are bases
of ker S and ker T , respectively. If 1≤ i≤ r, show
that S(ei) = T (gi) for some gi in V , and prove that
{g1, . . . , gr, fr+1, . . . , fn} is a basis of V .]

Exercise 7.3.29 If T : V →V is a linear transformation
where dim V = n, show that T ST = T for some isomor-
phism S : V →V . [Hint: Let {e1, . . . , er, er+1, . . . , en}
be as in Theorem 7.2.5. Extend {T (e1), . . . , T (er)} to
a basis of V , and use Theorem 7.3.1, Theorem 7.1.2 and
Theorem 7.1.3.]

Exercise 7.3.30 Let A and B denote m×n matrices. In
each case show that (1) and (2) are equivalent.

a. (1) A and B have the same null space. (2) B = PA

for some invertible m×m matrix P.

b. (1) A and B have the same range. (2) B = AQ for
some invertible n×n matrix Q.

[Hint: Use Exercise 7.3.28.]

7.4 A Theorem about Differential Equations

Differential equations are instrumental in solving a variety of problems throughout science, social science,
and engineering. In this brief section, we will see that the set of solutions of a linear differential equation
(with constant coefficients) is a vector space and we will calculate its dimension. The proof is pure linear
algebra, although the applications are primarily in analysis. However, a key result (Lemma 7.4.3 below)
can be applied much more widely.

We denote the derivative of a function f : R→ R by f ′, and f will be called differentiable if it can
be differentiated any number of times. If f is a differentiable function, the nth derivative f (n) of f is the
result of differentiating n times. Thus f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . , and in general f (n+1) = f (n)′

for each n≥ 0. For small values of n these are often written as f , f ′, f ′′, f ′′′, . . . .

If a, b, and c are numbers, the differential equations

f ′′−a f ′−b f = 0 or f ′′′−a f ′′−b f ′− c f = 0

are said to be of second order and third-order, respectively. In general, an equation

f (n)−an−1 f (n−1)−an−2 f (n−2)−·· ·−a2 f (2)−a1 f (1)−a0 f (0) = 0, ai in R (7.3)


